THE AIRBORNE SPREAD OF INFECTIOUS AGENTS: SURVIVAL AND DECONTAMINATION OF HUMAN PATHOGENS IN INDOOR AIR

SYED A. SATTAR, PhD
PROFESSOR EMERITUS OF MICROBIOLOGY, FACULTY OF MEDICINE
UNIVERSITY OF OTTAWA, OTTAWA, ON, CANADA
AND
CHIEF SCIENTIFIC OFFICER, CREM CO, INC., MISSISSAUGA, ON, CANADA (WWW.CREMCO.CA)

Hosted by Paul Webber
paul@webbertraining.com

www.wbbertraining.com

May 18, 2017
ACKNOWLEDGEMENTS

- MR. PAUL WEBBER (WEBBER TRAINING)
- DR. KATHIE WRIGHT (BMI, UNIV. OF OTTAWA)
- DR. BAHRAM ZARGAR, (CREMCO)
- MR. RICHARD KIBBEE (CARLETON UNIV., OTTAWA, ON)
- MR. JOSEPH RUBINO, DR. M. KHALID IJAZ & MISS ILZE BRUNING (RB, MONTVALE, NJ)
- DR. M. SOLTANI (JOHNS HOPKINS UNIV., BALTIMORE, MD)
- MR. F.M. KASHKOOLI & MR. F. MORADI (K.N. TOOSI UNIV., TEHRAN)
OBJECTIVES

- ‘AEROBIOLOGY’ & POTENTIAL OF PATHOGEN SPREAD BY AIR
- CHALLENGES OF STUDYING PATHOGENS IN AIR
- OBSTACLES IN LINKING AIR TO ACQUISITION OF INFECTIONS
- SET-UP TO STUDY AIRBORNE SURVIVAL & REMOVAL/INACTIVATION
- TESTING OF AIR DECONTAMINATION DEVICES
- FUTURE DIRECTIONS

SATTAR – TELECLASS ON INDOOR AIR-MAY 18-2017
AERIOBIOLOGY & INDOOR AIR QUALITY

‘AERIOBIOLOGY’ – STUDY OF LIVING ORGANISMS & THEIR PARTS IN AIR

- INCLUDES MICROBIAL QUALITY OF INDOOR AIR

INDOOR AIR IS AN ENVIRONMENTAL EQUALIZER!

EXPOSURE TO ‘INDOOR AIR’ WITH CAVE-DWELLING ~200,000 YEARS AGO

DOMESTICATED ANIMALS (CATTLE, DOGS & PIGS) FACILITATED RISE OF ZOONOSES INCLUDING AIRBORNE ONES (E.G., MEASLES)

WE SPEND MORE TIME INDOORS & BREATHE ~11,000 L OF AIR/DAY

WE ALL LEAVE OUR OWN PERSONAL MICROBIAL ‘FOOTPRINT’ INDOORS

BUT, LACK OF STANDARDIZED WAYS TO STUDY MICROBIAL AIR QUALITY

ALSO, DEARTH OF MEANS TO ASSESS INDOOR AIR DECONTAMINATION

SATTAR – TELECLASS ON INDOOR AIR-MAY 18-2017
COMPONENTS OF AEROBIOLOGY

- HUMAN PATHOGENS
- ANIMAL PATHOGENS
- SEEDS
- SMALL INSECTS
- ALLERGENS
- PLANT PATHOGENS
- ALGAE
- POLLEN

AEROBIOLOGY
SOURCES OF AIRBORNE PATHOGENS & ALLERGENS INDOORS (IJAZ ET AL., 2016)
FACTORS AFFECTING INDOOR AIR QUALITY

CHEMICAL
- GASES (CO, CO₂, O₃, NO)
- VOLATILE ORGANIC CHEMICALS (PERFUMES, CLEANERS, DISINFECTANTS, PAINTS, PESTICIDES, OFF-GASES)
- ASBESTOS

BIOLOGICAL
- HUMANS
- PET ANIMALS (CATS, DOGS, BIRDS)
- VERMIN (MICE, COCKROACHES)
- HOUSE PLANTS
- MICROBES (FREE-FLOATING, BIOFILM-BASED, MYCOTOXINS)
- POLLEN & ALLERGENS (ANIMAL DANDER, DUST MITES)

PHYSICAL
- RADON
- PARTICULATES (CIGARETTE SMOKE, PRINTERS/COPIERS)
- SMOKE FROM COOKING & HEATING FUELS
- DUST

ENVIRONMENTAL
- OUTDOORS (WEATHER & CLIMATE)
- HVAC SYSTEM
- LIFE-STYLE (AIR TEMP., RH, OCCUPANT TYPE & DENSITY)
INHALED DROPLET NUCLEI (≤5 μm IN DIAM.) REACHING ALVEOLAR SPACES

RETENTION OF INHALED PARTICLES IN TONSILLAR REGION; SUBSEQUENT TRANSLOCATION TO GUT

TRANSFER OF DRIED AIRBORNE CONTAMINATION ON ENVIRONMENTAL SURFACES TO HANDS AND OTHER VEHICLES

REAEROSOLIZATION OF DRIED AIRBORNE CONTAMINATION OF ENVIRONMENTAL SURFACES

SUSCEPTIBLE HOST
CHALLENGES IN STUDYING AEROBIOLOGY OF PATHOGENS (SATTAR ET AL., 2016)

<table>
<thead>
<tr>
<th>FACTOR(S)</th>
<th>REFINEMENTS REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL SET-UP</td>
<td>SPACE, BIOSAFETY, FIELD-RELEVANCE, EASE OF CONTROL & MONITORING OF TEST PARAMETERS</td>
</tr>
<tr>
<td>CHALLENGE-MICROBE SELECTION</td>
<td>REPRESENTATIVE OF AIRBORNE PATHOGENS, EASE OF CULTURE & RECOVERY, STABILITY DURING AEROSOLIZATION & IN AIR, PREP, CONC., PROTECTION</td>
</tr>
<tr>
<td>SUSPENSION TO BE NEBULIZED</td>
<td>SAFE & STANDARDIZED SOIL LOAD REPRESENTING BODY FLUIDS, ANTI-FOAM, PHYSICAL TRACER (IF NEEDED)</td>
</tr>
<tr>
<td>NEBULIZATION & PARTICLE SIZE DISTRIBUTION</td>
<td>SAFETY FOR MICROBE, GENERATION OF AEROSOLS/DROPLET NUCLEI, GRANULOMETRICS, UNIFORM DISTRIBUTION</td>
</tr>
<tr>
<td>AGING & EXPOSURE CONDITIONS</td>
<td>BETTER CONTROL OF AIR TEMP. & RH; TESTING AT RH BELOW 20%; HARMONIZED FOR MAJOR MICROBIAL TYPES</td>
</tr>
<tr>
<td>AEROSOL COLLECTION & SIZING</td>
<td>PROTECTION OF VIABILITY, OPTIMAL GROWTH CONDITIONS, NEUTRALIZATION OF ACTIVES,</td>
</tr>
<tr>
<td>ASSESSING DECONTAMINATION</td>
<td>PROPER CONTROLS, REALISTIC EFFICACY CRITERIA FOR METHOD/DEVICE AIR-DECONTAMINATION TECHNOLOGIES, NUMBER OF REPEATS</td>
</tr>
<tr>
<td>INTERPRETATION OF DATA</td>
<td>STATISTICAL ANALYSES, FIELD RELEVANCE & REGULATORY REQUIREMENTS</td>
</tr>
</tbody>
</table>
AEROBIOLOGY CHAMBER TO STUDY MICROBIAL SURVIVAL & DECONTAMINATION IN INDOOR AIR (IJAZ ET AL., 2016)
TEST MICROBE AEROSOLIZED WITH A COLLISON NEBULIZER & TWO-MINUTE AIR SAMPLES COLLECTED WITH A SLIT-TO-AGAR SAMPLER OVER EIGHT HOURS

\[A. \text{ BAUMANNII} (y = -0.0064x + 4.6558; R^2 = 0.9992) \]

\[S. \text{ AUREUS} (y = -0.0244x + 4.423; R^2 = 0.9988) \]

\[K. \text{ PNEUMONIAE} (y = -0.0037x + 4.6773; R^2 = 0.9875) \]

TESTING IN THE AEROBIOLOGY CHAMBER;
AIR TEMP. 22±2°C; RELATIVE HUMIDITY = 50±2%
CHALLENGE MICROBE - *STAPHYLOCOCCUS AUREUS*

ALL DEVICES BASED ON HEPA FILTRATION & UV LIGHT BUT WITH DIFFERENT AIR EXCHANGE RATES
AIR DECONTAMINATION UPON REPEATED MICROBIAL CHALLENGE (ZARGAR ET AL., 2016)

1st nebulized microbial challenge

2nd nebulized microbial challenge

3rd nebulized microbial challenge

log_{10} cfu/m^3

Time (minutes)

S. aureus transformed-biological decay-control

Efficacy test Device #1

based on device baseline-test data to determine LR values post-test
DOES IN-CAR AIR POSE A RISK TO HUMAN HEALTH? (SATTAR ET AL., 2016)

- WORLD TOTAL OF PASSENGER CARS TO INCREASE FROM CURRENT ONE BILLION TO >2.5 BILLION BY 2050; FAMILY CARS REPRESENT ~74% OF WORLD’S YEARLY OUTPUT OF MOTORIZED VEHICLES.

- ~80% OF N. AMERICAN COMMUTERS USE THEIR OWN CAR WITH ANOTHER 5.6% TRAVELLING AS PASSENGERS.

- WITH A LIFE-EXPECTANCY OF ~79 YEARS, THE AVERAGE N. AMERICAN SPENDS 4.3 YEARS DRIVING A CAR!

- THIS EQUATES TO DRIVING ~100 MINUTES/DAY WITH A LIFE-TIME DRIVING DISTANCE OF NEARLY 1.3 MILLION KM INSIDE THE CONFINED & OFTEN SHARED SPACE OF THE CAR.

- EXPOSURE TO A MIX OF POTENTIALLY HARMFUL POLLUTANTS.
RISK FACTORS FOR IN-CAR SPREAD OF PATHOGENS

(SATTAR ET AL., 2016)

<table>
<thead>
<tr>
<th>FACTORS</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH OF COMMUTE</td>
<td>RISK OF EXPOSURE TO HARMFUL AIRBORNE CONTAMINANTS INCREASES IN DIRECT PROPORTION TO LENGTH & FREQUENCY OF COMMUTE</td>
</tr>
<tr>
<td>CAR-POOLING</td>
<td>RISK OF EXPOSURE TO HARMFUL AIRBORNE CONTAMINANTS INCREASES IN DIRECT PROPORTION TO THE NUMBER OF OCCUPANTS</td>
</tr>
<tr>
<td>IMMUNOSUPPRESSION</td>
<td>INCREASING PROPORTION OF THE IMMUNOSUPPRESSED IN SOCIETY</td>
</tr>
<tr>
<td>POTENTIAL HOSTS</td>
<td>WIDE VARIATION IN THE AGE & GENERAL HEALTH STATUS OF OCCUPANTS</td>
</tr>
<tr>
<td>STRESS OF DRIVING</td>
<td>STRESS OF DRIVING MAY LOWER BODY’S GENERAL RESISTANCE MECHANISMS</td>
</tr>
<tr>
<td>RESPIRABLE PARTICLES (E.G., PM 2.5)</td>
<td>INHALATION OF SUCH PARTICULATES MAY ENHANCE EXPOSURE & SUSCEPTIBILITY TO INFECTIOUS AGENTS</td>
</tr>
<tr>
<td>VOLATILE ORGANIC CHEMICALS (VOCs)</td>
<td>EXPOSURE TO VOCs MAY OCCUR SIMULTANEOUSLY WITH INHALATION OF RESPIRABLE PARTICULATES & MICROBES WITH POTENTIAL NEGATIVE ADDITIVE EFFECTS ON HEALTH</td>
</tr>
</tbody>
</table>
Sources of microbes, allergens, and endotoxins in in-car air (Sattar et al., 2016)

- Cargo
- Road dust
- Windshield washer fluid
- Air conditioning & heating systems
- Occupants
- Upholstery & carpets
- Pets

Sattar – Teleclass on Indoor Air - May 18-2017
CAR CHAMBER (SATTAR ET AL., APPL. ENVIRON. MICROBIOL., 2017)
TESTING OF THREE IN-CAR AIR DECONTAMINATION DEVICES (SATTAR ET AL., 2017)

ALL DEVICES BASED ON HEPA FILTRATION & UV LIGHT BUT WITH DIFFERENT AIR EXCHANGE RATES

CHALLENGE MICROBE - STAPHYLOCOCCUS AUREUS
SUMMARY OF THE MAIN FINDINGS

- Pathogens indoors come from humans, pets, plants, plumbing, toilets, showerhead, heating/cooling/ventilation systems.

- Vacuuming/mopping/dusting resuspend settled dust.

- *A. Baumannii* more stable than *K. Pneumoniae* in air; potentially a better surrogate for Gram-negatives.

- Devices #1 & #2 reduced test microbes by >3-log_{10} in ~45 minutes.

- Device #1 remained effective after 3 microbial challenges.

- Testing of pathogen survival & decontamination in in-car air.

- Aerobiology protocol approved by U.S. EPA.

- Treating indoor air to prevent environmental surface contamination.

FUTURE DIRECTIONS FOR R&D

- **STUDY OF AEROBIOLOGY OF HUMAN PATHOGENS IS IN ITS INFANCY!**
- **STANDARDIZED TEST FACILITIES, PROTOCOLS & GUIDELINES NEEDED**
- **EFFICIENT WAYS TO DETECT LOW LEVELS OF AIRBORNE PATHOGENS**
- **BETTER FIELD INVESTIGATIONS WITH UNEQUIVOCAL RESULTS**
- **MORE INFORMATION ON HEALTH IMPACT OF VARIOUS LEVELS OF RH/TEMP. ON HUMANS & THEIR SUSCEPTIBILITY TO AIRBORNE PATHOGENS**
- **COMBINED HEALTH IMPACT OF AIRBORNE POLLUTANTS**
- **RELEVANCE OF DATA FROM MOLECULAR STUDIES TO ASSESS RISKS?**
- **BETTER & LONGER-TERM RESEARCH FUNDING**

SATTAAR – TELECLASS ON INDOOR AIR-MAY 18-2017
FURTHER READING

"CLEAN AIR IS A BASIC REQUIREMENT OF LIFE. THE QUALITY OF AIR INSIDE HOMES, OFFICES, SCHOOLS, DAY CARE CENTRES, PUBLIC BUILDINGS, HEALTH CARE FACILITIES OR OTHER PRIVATE AND PUBLIC BUILDINGS WHERE PEOPLE SPEND A LARGE PART OF THEIR LIFE IS AN ESSENTIAL DETERMINANT OF HEALTHY LIFE AND PEOPLE’S WELL-BEING." - WHO, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Teleclass Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 30, 2017</td>
<td>(European Teleclass) THE GOOD THE BAD AND THE UGLY METHODS FOR BED PAN MANAGEMENT</td>
</tr>
<tr>
<td></td>
<td>Speaker: Gertie van Knippenberg-Gordebeke, International Consultant Infection</td>
</tr>
<tr>
<td></td>
<td>Prevention, The Netherlands</td>
</tr>
<tr>
<td></td>
<td>Sponsored by CleanIs (www.cleanis.com)</td>
</tr>
<tr>
<td>June 1, 2017</td>
<td>USING UNOFFICIAL SOURCES TO MONITOR OUTBREAKS OF EMERGING INFECTIOUS DISEASES:</td>
</tr>
<tr>
<td></td>
<td>LESSONS FROM PROMED</td>
</tr>
<tr>
<td></td>
<td>Speaker: Prof. Lawrence Madoff, Harvard University Medical School, Editor of</td>
</tr>
<tr>
<td></td>
<td>ProMED Mail</td>
</tr>
<tr>
<td>June 7, 2017</td>
<td>(South Pacific Teleclass) THE IMPACT OF CATHETER ASSOCIATED URINARY TRACT</td>
</tr>
<tr>
<td></td>
<td>INFECTION</td>
</tr>
<tr>
<td></td>
<td>Speaker: Prof. Brett Mitchell, Avondale College of Higher Education, Australia</td>
</tr>
<tr>
<td>June 8, 2017</td>
<td>(FREE Teleclass) ESTABLISHING A NATIONAL IPC PROGRAM ON A SHOESTRING BUDGET</td>
</tr>
<tr>
<td></td>
<td>Speaker: Prof. Shaheen Mehtar, Infection Control Africa Network, and Stellenbosch</td>
</tr>
<tr>
<td></td>
<td>University, Cape Town</td>
</tr>
</tbody>
</table>
Thanks to Teleclass Education

Patron Sponsors

- [Sealed Air Diversey Care](http://www.sealedair.com)
- [VIROX Technologies Inc.](http://www.virox.com)
- [World Health Organization Infection Prevention and Control Global Unit](http://www.who.int/gpsc/en)